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ARREST OF A MOVINGMASS BY ANAT2ACHEDM_4BRANE

By Manuel Stein

SUMMARY

Large-deflection solutions are obtained for a fixed-end membrane strip and

for a fixed circular membrane, each with a centrally located attached mass ini-

tially moving at a given speed. The solutions are given in the form of equations
and curves for the deflections and _tresses.

INTRODUCTION

For certain space-flight applications it is desirable to have a structure

that can be packaged for launching and that can be deployed in space by inflation.

Structures which satisfy such requirements are shells with membranelike walls.

The attachment of concentrated masses to such membranelike structures may be

required and during the inflation process these masses introduce dynamic loads

into the structure. In order to design such a structure to survive deployment,

it is important to be able to calculate the stresses and deformations in a mem-

brane structure due to the motion of an attached mass. To obtain a realistic

distribution of stresses, large-deflection (nonlinear) theory is essential. In

this paper large-deflection solutions are obtained in closed form for two funda-

mental problems involving the arrest of a centrally located moving mass attached

to a membrane. A centrally located mass is considered to be attached to (1) a

membrane strip fixed at its ends or (2) a circular membrane fixed at its outer

circumference. The assumption is made that the mass of the membrane is small in

comparison with the attached mass. For both mass-membrane systems the results

for the deflections and stresses as a function of time are given in equations

and curves.

SYMBOLS

a

b

C

E

half-length or radius of mass (fig. l)

half-length or outside radius of membrane (fig. l)

constant of integration

Young's modulus of membrane material



f

gl' g2

h

M

m

N

Nr,N8

Nx

r

t

tA

U

V o

W

X

differentiation of the principal symbol with respect to

respectively.

characteristic speed distribution

functions of time

thickness of membrane

mass

mass per unit width

longitudinal or radial stress resultant (Nx or Nr)

direct stress resultants in polar coordinates

longitudinal stress resultant

radial distance

time

time of arrest of mass

displacement in x- or r-direction

initial speed of mass

deflection normal to initial plane of membrane

longitudinal distance from center of strip (fig. i)

Poisson's ratio of membrane material

When the subscripts x, r, and t follow a comma, they indicate partial

x, r_ and t,

M_MBRANE-STRIPANALYSIS

The first configuration considered is a fixed-end membrane strip of length 2b

and any deslredwidth. Attached to it is a centrally located mass of length 2a

and of (mass) intensity m per unit width. (See fig. l(a).) Only deflections

symmetric about the center line are considered. The boundary conditions on dis-

placements are zero deflection at x = b:

w(b,t) = 0 (i)

and zero in-plane displacement at x = a and x = b:



u(a,t)= i)
u(b_t)

The boundary condition on stress resultant at the mass (at x = a) is

(2)

Nx(a,t)w x(a,t) = _¢ tt(a,t)
(3)

Initially the strip-mass system is assumed to have zero lateral deflection

and some characteristic speed distribution with the mass moving at speed V o.

Thus the initial conditions are

_(_,o): o (4)

and

w t(x,O ) = f(x)
(5)

where the characteristic speed distribution f(x) must be equal to zero at

x = b and equal to V o at x = a.

The equation of equilibrium of the longitudinal forces in the membrane

strip is

Nx# x = 0
(6)

The stress resultant Nx is given in terms of displacements by

i 2 ,x +
(7)

From equation (6) it is seen that Nx is independent of x. With the mass of

the membrane considered negligible in comparison with the attachedmass, the

equation of equilibrium of the transverse forces is

NxW3 x = 0
jx

(8)

which_ since Nx is independent of x, requires that w be linear in x:

w = gl(t) + xg2(t) (9)
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It then follows from equations (2) and (7) that u = 0 everywhere.

tion (1) gives g2(t) =-bl-gl(t), or

w = ll- _)gl(t)

Condi-

(10)

The characteristic speed distribution is, therefore,

b - x (ii)
f(x) : Vo

Substitution of equation (10) into equations (3), (4), and (5) gives the

following nonlinear differential equation and initial conditions from which gl

may be found:

_h. 3 0 (12)

gl + b2(b - a)m(1 - #2) Z1 =

g1(O)--o
(z3)

b (l_)
_l(o): %

Equation (12) is multiplied through by gl and integrated to get

$c- Eh )gl4gl = 2b2(b - a)m(1 - _2

(]-5)

where C, the constant of integration, may be determined from equations (13) and

(14) to be

b2Vo 2
C=

(b - a)2

Equation (15) has the following solution:

It
gl =b _ (b - a)Eh cn (b - a)3(l - .2) m 2j

(16)



where
in the tables of elliptic functions to be

tA = 1.8541(i- b) 3/4 _(1-2EhVo2_2)mb3

to satisfy condition (13).

The deflection and stress resultant can now be written

cn is the elliptic cosine and tA is the time of arrest, which is found

and

1 I E_nmVo2 _ t ._ _lt_-INx -- V2('_ _-_"_')b cn2 .8541/1 - -- --

Note that the stress is a function of time only. The results given in equa-

tions (17) to (19) are also presented in figures 2# 33 4, 5, and 6.

(17)

(18)

(19)

Consider now the case in which the membrane strip is initially slack so that

the mass moving at speed V o does not draw the membrane tight until the slope of

the membrane is -_. Initial condition (4) is changed to

w(x,O) = n(b - x)

Condition (13) is accordingly

gl(o) = _b (20)

and C is given by

+C = (b - a) 2 02 2(1 - _2)mJ (21)

Equations (16) to (19) can be modified to apply to this case if Vo 2 and the

constant 1.8_41 in each of these equations is replaced as follows: Since C is

changed, replace Vo 2 by the bracketed term in equation (21); a new constant for
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the time of arrest (to replace 1.8541) is determined from the tables by requiring

that equation (16) satisfy gl(O) = _b instead of zero. Of course, this new

constant depends on _.

CIR_-M_4BRANEANALYSIS

The second problem considered is a fixed circular membrane of radius b

with a centrally located attached mass M of radius a. (See fig. l(b).) The

boundary conditions on displacements are zero deflection at r = b:

w(b,t) = 0 (22)

and zero in-plane displacement at r = a and r = b:

u(a,t) = O_ (25)

u(b,t) oj

The boundary condition on stress resultant at the mass (at r = a) is:

Nr(a,t)w r(a,t) = _ tt(a,t)
2_a 3

(24)

Initially the circular membrane-mass system is assumed to have zero lateral

deflection and some characteristic speed distribution with the mass moving at

speed V o. Thus the initial conditions are

,,,,(r,O) = 0 (27)

and

w t(r,O ) = f(r) (26)

The characteristic speed distribution f(r) must be equal to zero at r = b and

equal to V o at r = a.

The equation of equilibrium of the radial forces in the circular membrane is

i N
Nr'r + r( r- Ne) = 0 (27)

The stress resultants Nr and Ne are given in terms of displacement by



(281

which, upon substitution into equation (271, lead to the following equilibrium

equat ion:

U, rr + Ir=u,r - l__r2 + W, rrw,r + l---i-liW2r'r2 =
0 (3o)

With the mass of the membrane considered negligible in comparison with the

attached mass, the equation of equilibrium of the transverse forces is

{(rNrw, r),r = 0
(31)

or

Ir(u r + _lWr2 + t_rU--)W,r!,r = 0
(32)

If _ = 1 the solution for u is simply u = O, and the solution for w
3

is given by equation (32), which becomes

and therefore

w = gl(t) + r2/3g2(t )

Boundary condition (221 leads to the relation

g2(t) =-b2-_/3 l(tl
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or

It is expected that the results are not strongly affected by the value of _3 and

since 1/3 is a practical value of _ for many materials, the remainder of the

analysis is limited to this case.

The form of equation (33) suggests the possibility that this problem for

_ _ as well as _ = _ may be Solved by initially assuming separation of

variables. A replacement for the r-dependent factor in equation (33) can be

determined for _ _ _. It is in the form of the corresponding classical static

loading solution (which is given by considerably more complicated relations for

_)

From equation (33) and the conditions specified, the characteristic speed
distribution is

b2/3_ r2/3

fCr)= Vob2/3 a2/3 (34)

Substitution of equation (33) into equations (24), (25), and (26) gives the fol-

lowing nonlinear differential equation and initial conditions from which gl can

be found:

8_ 3 o (35)

27t2 - M(I- _2)

gl(o): 0 (36)

_l(O)= Vo b2/3
b2E- 2/3 (37)

Equations (35), (36), and (37) are identical in form to equations (12), (13), and

(14) of the previous problem. The results that follow were obtained in the same

way as those of the previous problem:
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tA I 12' 3J  27 I-16 vo2

N r =

The results given in equations (38) to (40) are also presented in figures 2, 3,

7, 8, and 9.

(4o)

DISCUSSION OF FIGURES

In the previous sections equations giving the deflection and stresses were

obtained in closed form for the arrest of a moving mass attached to a membrane

strip and to a circular membrane. In this section the figures presenting the

results of these equations are discussed.

The time variation of deflection of the mass is presented in figure 2 and

the time variation of stress resultant at the mass is presented in figure 3 for

both the membrane-strip and the circular-membrane problem. Both figu_res show

variations for the first quarter-period of vibration - that is_ from the initial

zero-deflection position to the time of arrest.

The time of arrest tA is given for the membrane strip in figure 4 and

for the circular membrane in figure 7 as a function of a/b, the ratio of com-

parable dimensions of the mass and the membrane. (See fig. i.) Although the

parameters are somewhat different, the trends are roughly the same.

The solid lines in figures 5 and 8 give the deflection as a function of

distance from the center for several values of a/b. The dashed line gives the

maximum deflection (deflection of the mass) for all values of a/b. The trends

for the strip and circular membrane are again roughly the same. The solid lines

in figures 6 and 9 give the stress-resultant distribution; the dashed line gives

the stress resultant at the mass. The stress-resultant distribution is constant

for the strip, and the stress resultant at the mass increases with increase in

relative size (dimension) of mass. For the circular membrane the stress result-

ant at the mass first decreases and then increases with increase in relative size

9



of mass. For a mass of large dimensions the results for the strip and the cir-

cular membrane are essentially the same.

C0NCI_JDING Rt!NARKS

The analysis is presented for the symmetrical motion of a membrane strip with

a centrally located attached mass initially moving at a given speed. Results are

presented for the initially flat membrane and for the case in which the membrane

is slack until a given slope is reached.

The analysis and results are presented for the symmetrical motion of a cir-

cular membrane having a Poisson's ratio of i/3 with a centrally located attached

mass initially moving at a given speed. These results 3 as well as results for

other values of Poisson's ratioj may be obtained by the method of separation of

variables. The present results are for a practical value of Poisson's ratio (1/3)

and the relations involved are considerably less complicated than for other values

of Poisson's ratio.

Langley Research Center 3

National Aeronautics and Space Administration,

Langley Station, Hampton, Va., May i, 1963.
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(a) Membrane strip.

(b) Circular membrane.

Figure 1.- Dimensions of configurations studied.
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Figure 2.- The time variation of deflec-

tion of the mass from the initial

zero-deflection position to the time

of arrest tA for both the membrane

strip and the circular membrane.
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Figure 3.- The time variation of stress

resultant in the membrane at the mass

from the initial zero-deflectlon posi-

tion to the time of arrest tA for both

the membrane strip and the circular

membrane.
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Figure 4.- The time of arrest of a mass

attached to a membrane strip.
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Figure 5-- Distance variation of

deflection for membrane strip.
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Figure 6.- Distance variation of stress

resultant for membrane strip.
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Figare 7.- The time of arrest of _ mass

attached to a circular membrane.
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Figure 9.- R_dial distance variation of

Figure 8.- Radial distance variation of radial stress resultant for circular

deflection for circular membrane, membrane.
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